Finding Arc Lengths:

Arc Length =
$$\frac{\text{arc}}{360^{\circ}} \bullet \pi d$$

Find the length of the arc where the region is shaded:

whole · circum

$$\frac{50}{360} \cdot \text{T}(42)$$
= $\frac{35\text{T}}{6}$

Sector Area:

Sector Area =
$$\frac{\text{arc}}{360^{\circ}} \bullet \pi r^2$$

Find the sector area of the shaded region:

 $\frac{80}{360} \cdot \pi(4)^2$ 3.

55 360 ·∏(21)2

211.66 mm2

135 ·T(6)2 4.

288 360 · T(8.4)² 177.34 ft2

Finding Arc Lengths: You Practice: Arc Length = $\frac{\text{arc}}{360^{\circ}} \cdot \pi d$ Find the length of the arc where the region is shaded:

 $=\frac{100}{360} \cdot 2\pi(7)^{7}$. _ 35T = (12. 22 cm

 $=\frac{240}{360} \cdot 2T(2)$

shaded is 180+82= 262° $=\frac{262}{360}.2T(4.1)$

Sector Area: You Practice:

Sector Area =
$$\frac{\text{arc}}{360^{\circ}} \bullet \pi r^2$$

Find the sector area of the shaded region:

 $\frac{90}{360} \cdot \Pi(3)^2$ 7. 7.07in2

360 · T(13)2 36-87 in2

B 360-160 $\frac{200}{360} \cdot \pi(5)^2$

98 ·TT (17)2 247.16 m²