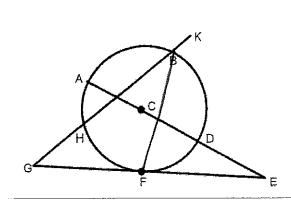
UNIT 3

Circle Properties

Name: 2nd Perioc

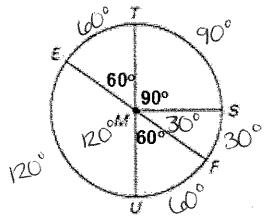
1: Name the following as a chord, a secant, a tangent, a diameter, or a radius—be specific!



- Diameter
- b. CD radius
- c. \overline{EG} Tangent d. \overline{HB} Chord
- $\frac{1}{e}$ $\frac{1}{FB}$ Chord
- Tangent Secant KG

In the following questions, EF and TU are diameters of Circle M. Find the indicated measure.

- 2. m ET
- 3. mSF
- 4. mETS
- 60+90 = 150°
- 5. m TSF 6. mSU
- 7. m EU

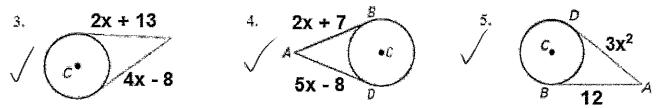


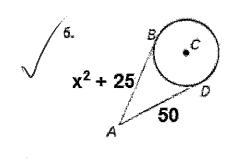
- 8. ESF is a _____ (minor arc, major arc, semicircle)
- (minor arc, major arc, semicircle)
- 10. ETU is a (minor arc, major arc, semicircle)
- 11. ET is a _____ (minor arc, major arc, semicircle)
- 12. SEU is a _____ (minor arc, major arc, semicircle)

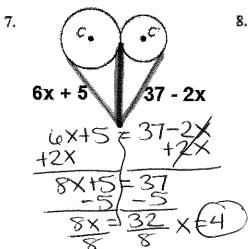
Example 1 – Tangent Properties

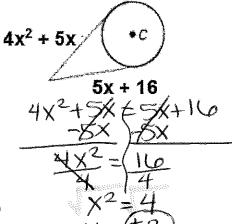
EXAMPLE 1	RULE	WORKED OUT	
6x-3	2 tangent segments are congruent when they are joined at a common exterior point. Tangent = Tangent	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3 D
1, is EF tangent to OD?	Tangent Rule: If a line is tangent	$a^2 + b^2 = c^2$	
D 61	to a circle, then it is perpendicular to the radius drawn to the point of tangency. If I is tangent to O Q at P, then I L QP. Perpendicular Tangent Rule: In a	$a^{2}+b^{2}=c^{2}$ $0 11^{2}+60^{2}=c^{2}$ $3721=c^{2}$ $61=c$	
2. Is AB tangent to OC?	plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle. If I L QP at P, then I is	yes, \overline{EF} is a tangent (2) $8^2+16^2=C^2$	É
C 8 16	tangent to G Q.	$320 = C^{2}$ $17.889 = C^{*}$ AB is Not a target	

Solve for x using the appropriate property:

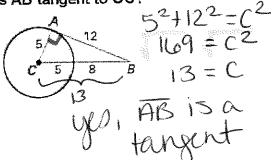




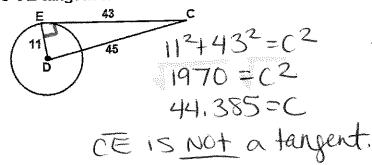




9. Is AB tangent to OC?



10. Is CE tangent to OD?

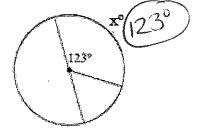


Example 2 - Central and Inscribed Angles

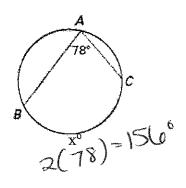
EXAMPLE 2	RULE	WORKED OUT
1230	A central angle is equal to the intercepted arc. Central Angle = Arc Central Some	× ₹123°
32° x	An inscribed angle is ½ the intercepted arc. Arc = 2(Angle) Angle = Arc 2	X=2(32) =(64°)

Find the missing angle:

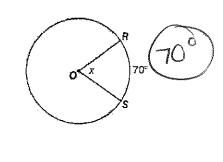
1.



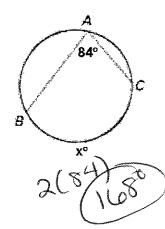
2.



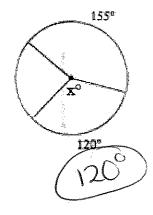
3.



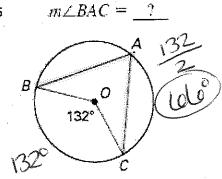
4.



5.



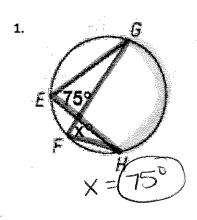
 ϵ



Example 3 - Inscribed Angles that Share an Intercepted Arc

EXAMPLE 3	RULE	WORKED OUT
(5x - 2)° 5(11) - 53 (6x + 9)°	If inscribed angles intercept the same arc, they are congruent. Angle = Angle	5x-2 = 4x+9 -4x $-4xx-2 = 9+2+2x = 11$

Solve for x or find the angle requested.

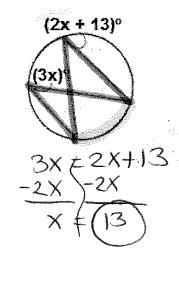


$$(2x + 11)^{\circ}$$

$$2x + 11 \neq 4x - 3$$

$$-2x \qquad -2x \qquad +3 \qquad +3 \qquad +3$$

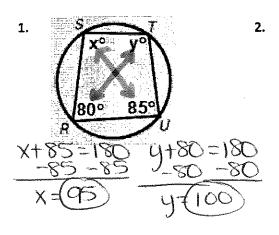
$$14 = 2x + 3$$

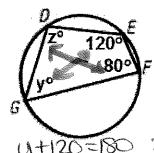


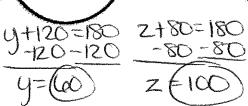
${\bf Example~4-Inscribed~Quadrilaterals}$

EXAMPLE 4	RULE	WORKED OUT
2x° 87°	When a quadrilateral is inscribed in a circle, opposite angles are supplementary (add up to 180). Opp Angle + Opp Angle = 180	$2X + 100 = 180 \left(y + 87 = 180 \right)$ $-100 - 100 \left(-87 + 87 \right)$ $2X = 80$ $2 = 80$ $2 = 40$ $Y = 93$

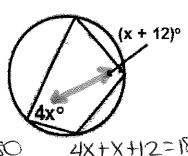
Solve for the missing variables.







3.

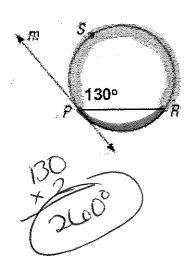


4x+x+12=180 5x+12=180 -12 -12 5x = 168 x=733.6

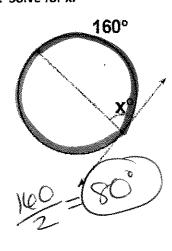
Example 5 – Intersecting Chords and Tangents

EXAMPLE 5	RULE	WORKED OUT
156° m	If a chord and a tangent intersect on the circle, the measure of the angle is ½ the measure of the intercepted arc. Arc = 2(Angle) Angle = Arc 2	$x = \frac{156}{2}$ $y = \frac{204}{2}$ $x = \sqrt{78}$ $y = \sqrt{102}$

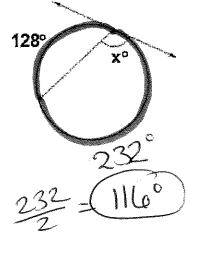
1. Find the m PSR



2. Solve for x.



3. What is $m \angle x$?

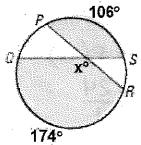


Example 6 - Interior and Exterior Angles

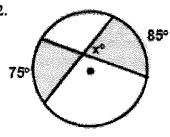
EXAMPLE 6	RULE	WORKED OUT
M 304 118-	If 2 chords intersect inside a circle, then the measure of each angle is ½ the sum of the measures of the arcs intercepted by the angle and its vertical angle. Arc + Arc = Inside Angle 2	$\frac{110+30}{2}$
A X 85° 1771*	If a tangent and a secant, 2 tangents, or 2 secants intersect in the exterior of a circle, the measure of the angle formed is ½ the difference of the measures of the intercepted arcs. Big Arc – Little Arc = Ext Angle 2	171-85

Solve for x:

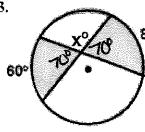
1.



2.



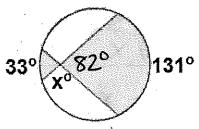
3.



80°

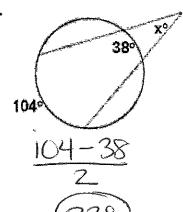
180-74

4.

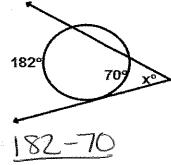


33+131 2 82° 180-82=

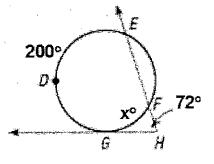
5.



6.



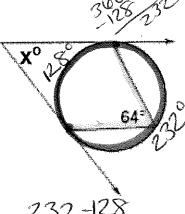
7.



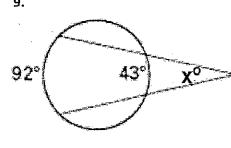
$$-200 - X = 144$$

$$-200 - 200$$

$$-X = -56$$



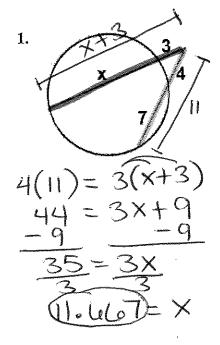
9.

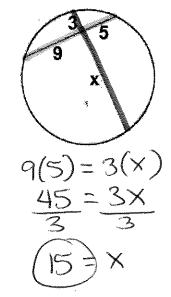


Example 7 - Segments formed by chords, secants, and tangents

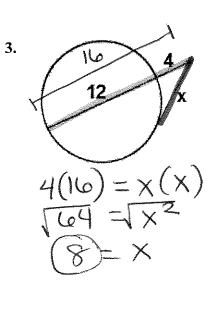
EXAMPLE 7	RULE	WORKED OUT
A FEET S	If 2 chords intersect in the interior of a circle then the product of each chord is congruent to the other. Chord 1 Chord 2 Part · Part = Part · Part	x(4) = 8(3) $\frac{4x}{4} = \frac{24}{4}$ x = 6
A 6 5 C	2 secant segments share the same exterior endpoint, then the product of the length of 1 secant segment and the length of its external segment = the product of the length of the other secant segment and the length of its external segment. Secant 1 Secant 2 Outside(whole) = Outside(whole)	$4(10) = 5(x+5)$ $40 = 5x+25$ $-25 = -25$ $15 = 5x$ 5 $(3) \times$
A 5 B 4 C	A secant segment and a tangent segment share an exterior endpoint, then the product of the length of the secant segment & its external segment equals the square of the tangent segment length. Secant Tangent Outside(whole) = Outside(Outside) Outside(whole)	$4(9) = X(X)$ $\sqrt{36} = \sqrt{X^2}$ $6 = X$

Solve for x.

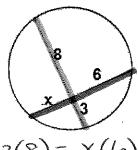




2.



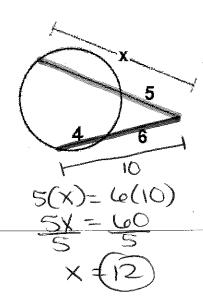
4.



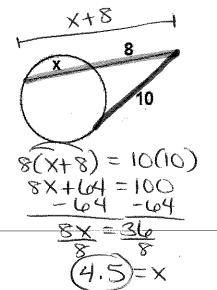
$$3(8) = x(6)$$

 $24 = 6x$

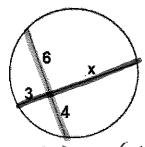
5



6.

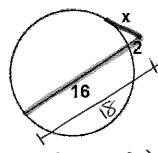


7.



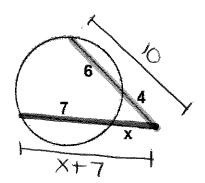
$$6(4) = 3(x)$$

8.



$$2(18) = x(x)$$

9.

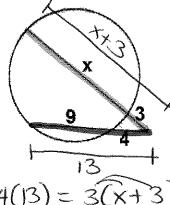


$$4(10) = x(x+7)$$

$$40 = x^2 + 7x$$

$$-\frac{70}{40}$$

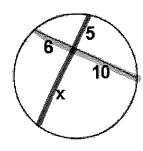
10.



$$4(13) = 3(x+3)$$

$$52 = 3x + 9$$

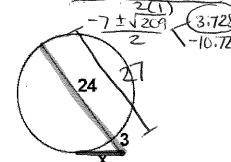
11.



$$6(10) = 5(X)$$

$$\frac{60}{5} = \frac{5X}{5}$$

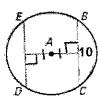
12.



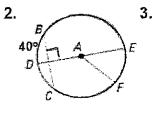
$$3(27) = x(x)$$

EXAMPLE 8	RULE	WORKED OUT
Find m AD. 2x° (x + 40)° A B	Congruent Chord and Arc In the same circle, or in congruent circles, 2 minor arcs are congruent if and only if their corresponding chords are congruent.	$2X \neq x+40$ -x $-xx = (40)mAB = 2x = 2(40) = 80$
EX. 1: DC =	* If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc. * If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.	DC = 8
EX. 1: PS = 12 TV = 12 SQ = 7 Find QU.	Congruent Chords In the same circle, or in congruent circles, 2 chords are congruent if and only if they are equidistant from the center.	$a^{2}+b^{2}=c^{2}$ $x^{2}+(e^{2}=7^{2})$ $x^{2}+3b=49$ $-3b=3b$ $x^{2}+13$ $x=(3.60b)$

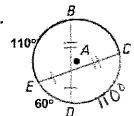
1.



 $m \overline{ED} = \underline{10}$

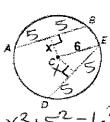


 $m\widehat{DC} = \frac{40^{\circ}}{}$



 $\mathbf{m} \widehat{\mathsf{EDC}} = \underline{170}^{\circ}$

4. AB = DE = 10 radius = 6 Find x.



X²+5²=6² X²+2S=36 X²+2S=36 X²EII Y 6 2 3 1 7 5. QV = 2 QU = 2 SU = 3 Find x.

