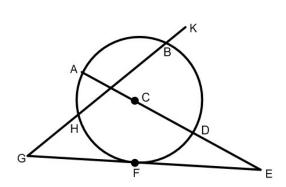
UNIT 3

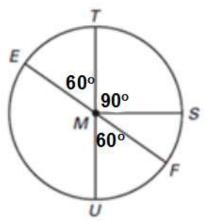
Circle Properties


Name: ______

Circle Terminology

Term	Picture	Definition
Circle	\odot	
Radius	\odot	
Diameter	\odot	
Chord	\odot	
Secant	\odot	
Tangent	\odot	

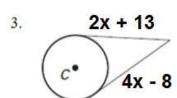
Term	Picture	Definition
Minor Arc	\odot	
Major Arc	\odot	
Semicircle	\odot	
Central Angle	\odot	
Inscribed Angle	\odot	

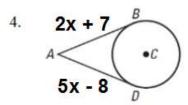

1: Name the following as a chord, a secant, a tangent, a diameter, or a radius—be specific!

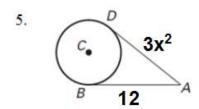
- a. \overline{AD}
- b. \overline{CD}
- c. \overline{EG}
- d. \overline{HB}
- e. \overline{FB}
- f. \overline{FE}

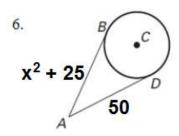
In the following questions, EF and TU are diameters of Circle M. Find the indicated measure.

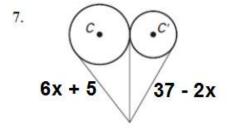
- 2. m ET
- 3. mSF
- 4. mETS
- 5. m TSF
- 6. m SU
- 7. m EU _____

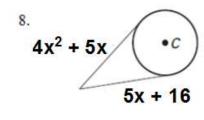


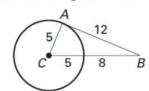

- 8. ESF is a _____ (minor arc, major arc, semicircle)
- 9. SU is a _____ (minor arc, major arc, semicircle)
- 10. ETU is a _____ (minor arc, major arc, semicircle)
- 11. ET is a _____ (minor arc, major arc, semicircle)
- 12. SEU is a _____ (minor arc, major arc, semicircle)

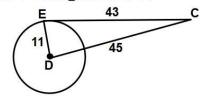

Example 1 – Tangent Properties


EXAMPLE 1	RULE	WORKED OUT
6x - 3 A	2 tangent segments are congruent when they are joined at a common exterior point. Tangent = Tangent	
1. Is EF tangent to OD? Delta 111	Tangent Rule: If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency. If I is tangent to 0 Q at P, then I \(\preceq\text{QP}\). Perpendicular Tangent Rule: In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle. If I \(\preceq\text{QP}\) at P, then I is tangent to 0 Q.	


Solve for x using the appropriate property:



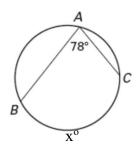




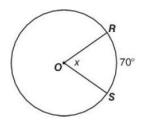
9. Is $\overline{\mathsf{AB}}$ tangent to OC?

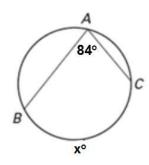
10. Is $\overline{\text{CE}}$ tangent to OD?

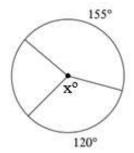
Example 2 – Central and Inscribed Angles

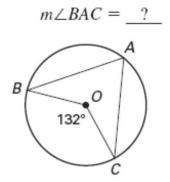

EXAMPLE 2	RULE	WORKED OUT
123°	A central angle is equal to the intercepted arc. Central Angle = Arc	
32° x°	An inscribed angle is $\frac{1}{2}$ the intercepted arc. Arc = 2(Angle) Angle = $\frac{\text{Arc}}{2}$	

Find the missing angle:


1.

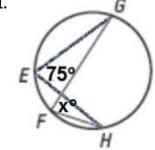

2.

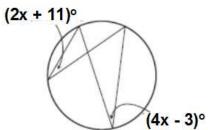

3.


4.

5.

6

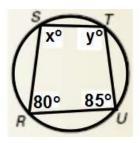



Example 3 – Inscribed Angles that Share an Intercepted Arc

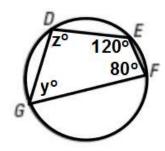
EXAMPLE 3	RULE	WORKED OUT
(5x - 2)°	If inscribed angles intercept the same arc, they are congruent. Angle = Angle	WORKED GOT
(4x + 9)°		

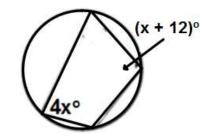
Solve for x or find the angle requested.

1.


 $(2x + 13)^{\circ}$ (3x)°

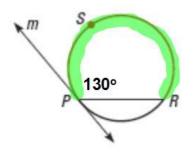
Example 4 – Inscribed Quadrilaterals

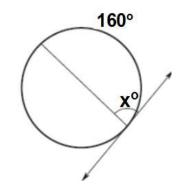

EXAMPLE 4	RULE	WORKED OUT
y° 100° 2x° 87°	When a quadrilateral is inscribed in a circle, opposite angles are supplementary (add up to 180). Opp Angle + Opp Angle = 180	


Solve for the missing variables.

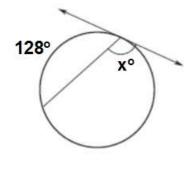
1.


2.



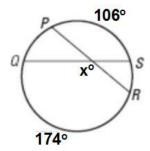

Example 5 – Intersecting Chords and Tangents

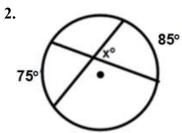
EXAMPLE 5	RULE	WORKED OUT
C 1 2 156° m	If a chord and a tangent intersect on the circle, the measure of the angle is $\frac{1}{2}$ the measure of the intercepted arc. Arc = 2(Angle) Angle = $\frac{\text{Arc}}{2}$	



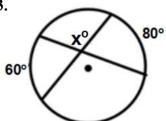
2. Solve for x.

3. What is $m \angle x$?

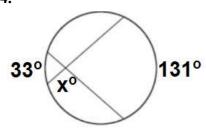


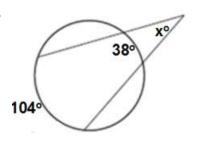

Example 6 – Interior and Exterior Angles

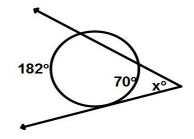
EXAMPLE 6	RULE	WORKED OUT
M 30° P	If 2 chords intersect inside a circle, then the measure of each angle is ½ the sum of the measures of the arcs intercepted by the angle and its vertical angle. Arc + Arc = Inside Angle 2	
A	If a tangent and a secant, 2 tangents, or 2 secants intersect in the exterior of a circle, the measure of the angle formed is ½ the difference of the measures of the intercepted arcs. Big Arc – Little Arc = Ext Angle 2	

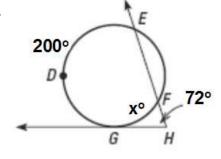

Solve for x:

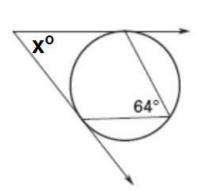
1.

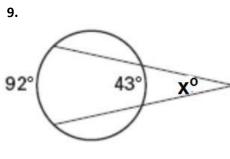



3.

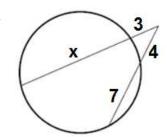

4.


5.

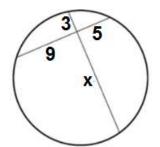


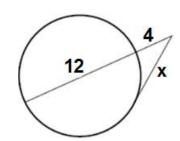

6.

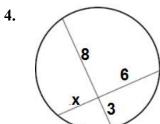
7.



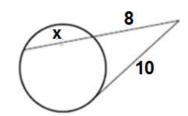
Example 7 – Segments formed by chords, secants, and tangents

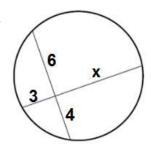

EXAMPLE 7	RULE	WORKED OUT
$A \xrightarrow{X} A \xrightarrow{B} C$	If 2 chords intersect in the interior of a circle then the product of each chord is congruent to the other. Chord 1 Chord 2 Part · Part = Part · Part	
$A = \begin{bmatrix} 6 & B & 4 \\ & & & & & \\ & & & & & \\ & & & & &$	2 secant segments share the same exterior endpoint, then the product of the length of 1 secant segment and the length of its external segment = the product of the length of the other secant segment and the length of its external segment. Secant 1 Secant 2 Outside(whole) = Outside(whole)	
A 5 B 4 C	A secant segment and a tangent segment share an exterior endpoint, then the product of the length of the secant segment & its external segment equals the square of the tangent segment length. Secant Tangent Outside(whole) = Outside(Outside)	

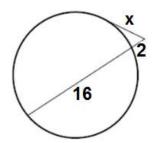

Solve for x.

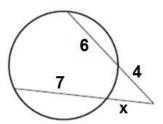

1.

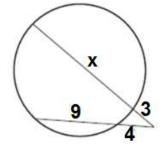
2.

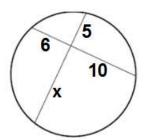


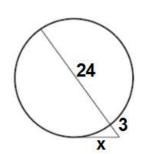

5


6.


7.

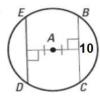

8.

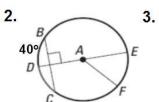

9.



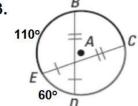
10.

11.

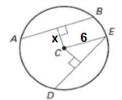



Example 8 – Chord Properties

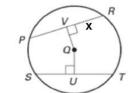
EXAMPLE 8	RULE	WORKED OUT
Find m AD. 2x° (x + 40)° A B	Congruent Chord and Arc In the same circle, or in congruent circles, 2 minor arcs are congruent if and only if their corresponding chords are congruent.	
EX. 1: DC =	* If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc. * If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.	
EX. 1: PS = 12 TV = 12 SQ = 7 Find QU.	Congruent Chords In the same circle, or in congruent circles, 2 chords are congruent if and only if they are equidistant from the center.	


1.

m ED = ____



m DC = ____



m EDC = ___

4. AB = DE = 10 radius = 6 Find x.

5. QV = 2 QU = 2 SU = 3 Find x.

