\qquad

UNIT 5

QUADRATIC FUNCTIONS

$$
\begin{aligned}
& \text { Packet } 2 \\
& \text { SOLVING }
\end{aligned}
$$

Notes and Practice - Solving - By Inspection
Notes and Practice - Solving - The Discriminant
Notes and Practice - Solving - Quadratic Formula
Notes and Practice - Solving - By Factoring
Notes and Practice - Solving - Mixed Practice

Solving by Inspection: (Isolating x)

Ex1. $4 \mathrm{x}^{2}-5=-1 \quad$ Ex2. $\frac{x^{2}}{6}-4=10 \quad$ Ex3. $5(\mathrm{x}-7)^{2}=135$

You Try:
4. $x^{2}=9$
5. $x^{2}-16=0$
6. $12-2 x^{2}=4$
7. $x^{2}-144=0$
8. $2 x^{2}=2$
9. $16-x^{2}=-9$
10. $3 x^{2}-1=5$
11. $x^{2}-3=1$
12. $3 x^{2}-1=5$
13. $\frac{x^{2}}{4}-3=33$
14. $(x+3)^{2}=9$
15. $x^{2}=36$
16. $x^{2}-81=0$
17. $5(x-3)^{2}=500$
18. $-4 x^{2}=-36$

The Discriminant: $\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$

The Discriminant can be used to determine how many real solutions (roots) an algebraic equation will have.

Standard Form: $\mathbf{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$
Discriminant: $\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$

If the discriminant is >0 (positive) There are 2 Real Solutions and 0 Imaginary Solutions If the discriminant is $=0$ If the discriminant is <0 (negative) There is 1 Real Solution and 0 Imaginary Solutions There are 0 Real Solutions and 2 Imaginary Solutions

What does it mean to be real or imaginary??

Real Solutions will result in a graphed function that intersects the x-axis and Imaginary solutions will not.

Need a picture??

2 Real Solutions 1 Real Solution 0 Real Solutions

There are several terms that mean the same thing:

* Solution
* Roots
* Zeros

These also represent the x-intercepts on a graph.

Given the discriminant below, how many solutions would there be?

1. Discriminant $=9$
2. Discriminant $=-18$
3. Discriminant $=0$
\qquad Real Solutions \qquad Real Solutions
\qquad
\qquad

The Discriminant: $\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$

STEP 1: Make sure you are in standard form. $a x^{2}+b x+c=0$
STEP 2: Identify a, b, c
STEP 3: Substitute into the discriminant formula. $b^{2}-4 a c$
STEP 4: Use the discriminant to determine the number and type of solutions.

Ex 1. $5 x^{2}-8 x+2=0$
Ex 2. $4 x+3 x^{2}+6=0$
Ex 3. $4 x^{2}-4 x=-1$

You Try:

1. $2 x^{2}+7 x+3=0$
2. $x^{2}+8 x+12=0$
3. $7 x^{2}-4 x-3=0$
4. $5 x^{2}=10 x-5$
5. $3 x^{2}+5=-7 x$
6. $5-x^{2}-3 x=0$

Solving using the Quadratic Formula: Standard Form

When using the quadratic formula you are finding solutions which represent the x-intercepts on the graph of a quadratic function.

Standard Form: $y=a x^{2}+b x+c$ Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Example 1: $x^{2}+6 x+5=0$

$$
\begin{aligned}
& a=\square \\
& b= \\
& c= \\
& c=
\end{aligned}
$$

Example 2: $x^{2}-4 x+4=0$

$$
\begin{aligned}
& a= \\
& b= \\
& c=
\end{aligned}
$$

Example 3: $2 x^{2}-3 x+4=0$

You Try:

Use the quadratic formula to find the solutions to the following.

1. $x^{2}-x+3=0$
2. $-2 x^{2}+4 x-2=0$
3. $x^{2}+2 x-6=0$

$$
\mathrm{a}=\ldots \mathrm{b}=\ldots \mathrm{c}=
$$

$$
a=
$$

$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{c}=$
4. $x^{2}-5 x+1=0$
5. $2 x^{2}-4 x+14=0$
6. $x^{2}+6 x+9=0$

$$
a=\ldots \quad b=\ldots \quad c=
$$

$$
a=
$$

\qquad
\qquad

$$
a=\ldots \quad b=\ldots \quad c=
$$

Solving using the Quadratic Formula: Not in Standard Form

Standard Form: $\mathbf{y}=\mathbf{a} \mathbf{x}^{2}+\mathbf{b x}+\mathbf{c} \quad$ Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Step 1: Put in Standard Form. $a^{2}+b x+c=0$
Step 2: Identify a, b, and c
Step 3: Use the Quadratic Formula and Solve. Simplify if needed.

Example 1: $2 x^{2}-3 x=-2$
$a=$ \qquad b = \qquad c = \qquad

Example 2: $3+2 x^{2}-5 x=0$
$a=$ \qquad $b=$ \qquad $\mathrm{c}=$ \qquad

Example 3: $x^{2}+5 x=3 x-4$
$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{c}=$ \qquad

You Try:

Use the quadratic formula to find the solutions to the following. Put them in standard form first.

1. $x^{2}-5=2 x-1 \quad a=\ldots \quad b=\ldots \quad c=\ldots \quad$ 2. $3 x^{2}+2 x=2 x^{2}-1 \quad a=_\quad b=\ldots \quad c=$
2. $x^{2}+2 x=15$
$a=$ \qquad $b=$ \qquad $\mathrm{c}=$
3. $x^{2}+1=x+5$
$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{c}=$ \qquad
4. $x^{2}-3 x=2 x^{2}$
$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{c}=$
5. $x^{2}+11=6 x$
$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{c}=$ \qquad

In your own words, describe what the solutions to a quadratic equation represent.

Quick Review of solving by inspection:

1. $x^{2}=25$
2. $x^{2}-49=0$
3. $12-3 x^{2}=24$
4. $\frac{x^{2}}{4}+4=13$
5. $2 x^{2}=32$
6. $(x+5)^{2}=16$

Quick Review of factoring:

7. $3 x-18$
8. $x^{2}-81$
9. $9 x^{2}-81$
10. $2 x^{2}+x-6$
11. $x^{2}+10 x+24$
12. $10 x^{2}-21 x+9$

Solving by Factoring:
STEP 1: Make sure you are in standard form. $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
STEP 2: Factor fully
STEP 3: Set each factor equal to 0 and solve.
Ex1. $5 x-25=0$
Ex2. $x^{2}-64=0$
Ex3. $2 x^{2}+3 x-20=0$

You Try:

1. $x^{2}+5 x+4=0$
2. $x^{2}+8 x=0$
3. $x^{2}-36=0$
4. $x^{2}+9 x+14=0$
5. $5 x^{2}+17 x-12=0$
6. $x^{2}+3 x-10=0$
7. $2 x^{2}-15 x-8=0$
8. $x^{2}+13 x+40=0$
9. $x^{2}-8 x+12=0$

Quadratic Formula and Discriminant Review and Practice:

Standard Form: $\mathbf{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c} \quad$ Discriminant: $\mathrm{b}^{\mathbf{2}}-4 \mathrm{ac}$
Find the Discriminant of the following and identify how many solutions it has and whether or not they are real or imaginary:

1. $2 x^{2}+3 x+5=0 \quad a=\ldots \quad b=\ldots c=\quad$ How many Real Solutions?

How many Imaginary Solutions?
2. $x^{2}-4 x+3=0 \quad a=\ldots b=$ \qquad $\mathrm{c}=$ How many Real Solutions?

How many Imaginary Solutions? \qquad
3. $x^{2}+5 x+2=0 \quad a=\ldots \quad b=\ldots \quad c=$

How many Real Solutions?
How many Imaginary Solutions? \qquad
4. $9 x^{2}+12 x+4=0 \quad a=$ \qquad b $=$ \qquad $\mathrm{c}=$

How many Real Solutions?
How many Imaginary Solutions? \qquad
5. $4 x^{2}-4 x+1=0$
$a=$ \qquad b = \qquad $\mathrm{c}=$ \qquad How many Real Solutions?
\qquad
6. $x^{2}+2 x+5=0$
$a=$ \qquad $b=$ \qquad $\mathrm{c}=$ \qquad How many Real Solutions?
How many Imaginary Solutions?
Use the Quadratic Formula to solve the following:
$a=$ \qquad b $=$ \qquad
\square

1. $x^{2}-6 x+11=0$
$\mathrm{a}=$ \qquad $\mathrm{b}=$ \qquad $c=$ \qquad 2. $2 x^{2}-4 x+2=0$ |

2. $x^{2}+2 x-6=0$
$\mathrm{a}=$ \qquad b $=$ \qquad $\mathrm{c}=$ \qquad 4. $x^{2}-4=0$
$\mathrm{a}=$ \qquad b $=$ \qquad $\mathrm{c}=$ \qquad
3. $-2 x^{2}=0$
$\mathrm{a}=$ \qquad b = \qquad $\mathrm{c}=$ \qquad 6. $x^{2}-4 x+4=0$
$\mathrm{a}=$ \qquad b = \qquad $\mathrm{c}=$ \qquad

