- STEP 1 Label missing and given sides to determine which trig ratio you will set up.
- STEP 2 Set up the trig ratio and solve.

To find missing angles, you will need to take the inverse of the trig ratio

Sin - θ	2nd	Sin	n d	enter
Cos -1 θ	2nd	Cos	n d	enter
Tan -1 0	2nd	Tan	n	enter

- 1. A 10m $COS\Theta = \frac{A}{H}$ $COS\Theta = \frac{10}{H}$ $COS\Theta = \frac{10}{H}$ CO
- 4. $\kappa 8\sqrt{3} \text{ cm} \text{ M}$ $6\sqrt{2} \text{ cm} \theta$ $\tan \theta = 8\sqrt{3}$ $\tan \theta = 8\sqrt{3}$ $\cos \theta = \tan^{3}(8\sqrt{3})$ $\theta = \tan^{3}(8\sqrt{3})$ $\theta = 58.518^{\circ}$
- 2. $\frac{1}{4\sqrt{3}}$ 8 yd $\frac{1}{8}$ 9 $\frac{1$
 - 5.2 cm $Sin\theta = \frac{1}{5.2}$ $\Theta = Sin^{-1}(\frac{11}{5.2})$ $\Theta = (12.213^{\circ})$
- 3. θ 30m s 43m R $tan \theta = 43$ $tan \theta = 43$ tan

- 7. θ A 15 in θ tan θ = 49/5 θ =
- 8. $\frac{15 \text{ ft}}{8 \text{ ft}}$ Sin $\Theta = \frac{08}{4}$ Sin $\Theta = \frac{8}{15}$ $\Theta = \sin^{-1}(\frac{8}{15})$ $\Theta = 32.231^{\circ}$
- 9. 5 yd 2 yd \times Θ 2 yd \times Θ = 4 PD \times Θ = 4 PD \times Θ $= 5 \text{ in}^{1}(2/5)$ Θ = (23.578°)