\qquad PERIOD:

$$
\begin{gathered}
\text { Algebra II } \\
\text { UNIT } 1
\end{gathered}
$$

Quadratics
Revisited

Algebra II - Unit 1: Revisiting Quadratics

WHAT ARE YOU LEARNING?

Henry County Graduate Learner Outcomes:

- As a Henry County graduate, I will be able to create, interpret, use, and analyze patterns of algebraic structures to make sense of problems.
- As a Henry County graduate, I will be able to use functions to interpret and analyze a variety of contexts.

Georgia Standards of Excellence:

Lesson 1-1 - Simplifying Exponents

MGSE9-12.N.RN. 1 Explain how the meaning of rational exponents follows from extending the properties of integer exponents to rational numbers, allowing for a notation for radicals in terms of rational exponents. For example, we define $5(1 / 3)$ to be the cube root of 5 because we want $[5(1 / 3)]^{3}=5[(1 / 3) \times 3]$ to hold, so $[5(1 / 3)]^{3}$ must equal 5 .

Lesson 1-2 - Rewriting between Rational and Radical Notation and Simplifying Radicals
MGSE9-12.N.RN. 2 - Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Lesson 1-3 - Complex Operations and Equations

MGSE9-12.N.CN. 1 - Understand there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ where a and b are real numbers.

MGSE9-12.N.CN. 2 - Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

MGSE9-12.N.CN. 3 - Find the conjugate of a complex number; use the conjugate to find the quotient of complex numbers.

Lesson 1-4 - Solving Quadratics by Factoring

MGSE9-12.N.CN. 7 - Solve quadratic equations with real coefficients that have complex solutions by (but not limited to) square roots, completing the square, and the quadratic formula.

MGSE9-12.N.CN. 8 - Extend polynomial identities to include factoring with complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$.

Lesson 1-5 - The Discriminant and the Quadratic Formula

MGSE9-12.A.REI. 4 - Solve quadratic equations in one variable.

MGSE9-12.A.REI.4b - Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation.

Algebra II - Unit 1: Revisiting Quadratics

WHY ARE YOU LEARNING THIS?

Level 3 Performance Task:

Sorting Task - Solving quadratic equations by different methods.

Since solving is such a huge part of this unit you will be asked to sort various types of equations into four categories. In doing so you will determine the best method for solving each type of equation. Once sorting is completed, each equation will be solved using the identified method.

WHAT IS YOUR GOAL FOR THIS UNIT?

Unit Goal:

I scored a \qquad on my pretest.

My goal is to score a \qquad or higher on the end of unit test.

To achieve this goal I will \qquad

HOW WILL YOU KNOW WHEN YOU'VE MASTERED THIS? SHOW ME THE EVIDENCE!

Data Analysis:
 Pre-Test Score
 \qquad Post-Test Score
 \qquad

Learning Targets:	Pre-Test Score	Quiz Score
K1: I can extend the properties of integer exponents to rational numbers. (N.RN.1)	Post-Test Score	
R1: I can rewrite expressions involving radical and rational exponents. (N.RN.2)		
K2: I can simplify a complex number "i." For example, $\mathrm{i}^{2}=-1$. (N.CN.1)		
K3: I can add, subtract, and multiply complex numbers. (N.CN.2)		
R2: I can find a conjugate and use the conjugate to find the quotient of complex numbers. (N.CN.3)		
R3: I can solve quadratic equations to include complex solutions. (A.REI.4b, N.CN.7)		
R4: I can factor polynomials to include complex factors. (N.CN.8)		

LEARNING ACTIVITIES

Lesson 1-1 - Simplifying Exponents

K1: I can extend the properties of integer exponents to rational numbers. (N.RN.1)
___ Watch video lesson and take notes
___ Complete guided notes with teacher
Complete 1-1 practice

Algebra II - Unit 1: Revisiting Quadratics

Lesson 1-2 - Rewriting between Rational and Radical Notation and Simplifying Radicals

R1: I can rewrite expressions involving radical and rational exponents. (N.RN.2)
\qquad Watch video lesson and take notes
\qquad Complete g:uided notes with teacher
\qquad Complete 1-2 practice

Quiz 1-1 to 1-2

Lesson 1-3 - Complex Operations and Equations

K2: I can simplify a complex number "i." For example, $i^{2}=-1$. (N.CN.1)
___ Watch video lesson and take notes
___ Complete guided notes with teacher
___ Complete 1-3 practice
K3: I can add, subtract, and multiply complex numbers. (N.CN.2)
\qquad Watch video lesson and take notes
\qquad Complete guided notes with teacher
\qquad Complete 1-3 practice

R2: I can find a conjugate and use the conjugate to find the quotient of complex numbers. (N.CN.3)
\qquad Watch video lesson and take notes
\qquad Complete guided notes with teacher
Complete 1-3 practice

Quiz 1-3

Lesson 1-4 - Solving Quadratics by Factoring

R3: I can solve quadratic equations to included complex solutions. (A.REI.4b, N.CN.7)
\qquad Watch video lesson and take notes
\qquad Complete guided notes with teacher
\qquad Complete 1-4 practice

R4: I can factor polynomials to include complex factors. (N.CN.8)
\qquad Watch video lesson and take notes
\qquad Complete guided notes with teacher
\qquad Complete 1-4 practice

Lesson 1-5 - The Discriminant and the Quadratic Formula

R3: I can solve quadratic equations to included complex solutions. (A.REI.4b, N.CN.7)
___ Watch video lesson and take notes
___ Complete guided notes with teacher
Complete 1-5 practice

UNIT 1 Assessments

___ Complete Unit 1 Review Guide
Complete Unit 1 Performance Task
Complete Unit 1 Test
Complete Unit 1 Reflection

Algebra II - Unit 1: Revisiting Quadratics

Lesson 1-1: Simplifying Exponents

Standard: MGSE9-12.N.RN. 1 Explain how the meaning of rational exponents follows from extending the properties of integer exponents to rational numbers, allowing for a notation for radicals in terms of rational exponents.

Learning Target: K1: \qquad

Properties of Exponents

Property	Rule	Helpful Hint	Example
Product of Powers	$a^{m} \cdot a^{n}=a^{m+n}$	$\times \rightarrow+$	$x^{3} \cdot x^{2}=$ $x^{2 / 3} \cdot x^{1 / 5}=$
Power of a Power	$\left(a^{m}\right)^{n}=a^{m \bullet n}$	Power ${ }^{\text {Power }} \rightarrow \times$	$\left(x^{3}\right)^{2}=$ $\left(x^{3 / 4}\right)^{2 / 3}=$
Power of a Product	$(a b)^{m}=a^{m} b^{m}$	Distribute the exponent	$(3 x)^{4}=$
Negative Exponent	$\mathrm{a}^{-m}=\frac{1}{a^{m}}, \mathrm{a} \neq 0$	Turn that frown upside down!	$3^{-2}=$ $\frac{y^{2} x^{-3} z^{5}}{a^{-5} b^{2} c^{-3}}=$
Zero Exponent	$a^{0}=1, a \neq 0$	Zero Power cannot be zero	$4^{0}=$
Quotient of Powers	$\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$	$\div \rightarrow-$	$\frac{x^{7}}{x^{4}}=\quad \frac{x^{2 / 3}}{x^{1 / 3}}=$
Power of a Quotient	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, \mathrm{~b} \neq 0$	Distribute the exponent	$\begin{aligned} & \left(\frac{5}{3}\right)^{2}= \\ & \left(\frac{2}{3}\right)^{-3}= \end{aligned}$

Algebra II - Unit 1: Revisiting Quadratics

More Examples and Practice - Simplify the following:
1.) $\left(x^{2 / 5}\right)^{3 / 4}$
2.) $\frac{y^{2} x^{-3} z^{5}}{y^{-4} x^{6} z^{7}}$
3.) $\frac{y^{6}}{x^{9} \cdot z^{2}}$
4.) $x^{\frac{1}{5}} \cdot x^{\frac{3}{5}}$
5.) $\frac{a^{\frac{5}{3}}}{a^{\frac{1}{3}}}$
6.) $\frac{m^{\frac{2}{3}} \cdot m^{-\frac{1}{2}}}{m^{\frac{1}{6}}}$
7.) $\left(b^{\frac{1}{4}}\right)^{4}$
8.) $\left(p^{\frac{3}{4}}\right)^{\frac{2}{5}}$
9.) $\frac{w^{\frac{1}{6}}}{w^{-\frac{2}{3}}}$
10.) $7^{4} \cdot 7^{12}$
11.) $t^{-4} \cdot t^{15}$
12.) $3^{2 / 3} \cdot 3^{3 / 4}$
13.) $(-8)^{8} \cdot(-8)^{-13}$
14.) $\frac{b^{8}}{b^{6}}$
15.) $\frac{b^{1 / 3}}{b^{1 / 4}}$
16.) $\frac{11^{14}}{11^{18}}$
17.) $\left(9^{5}\right)^{4}$
18.) $5^{1 / 5} \cdot 5^{2 / 3}$
19.) $\quad\left(c^{2}\right)^{9}$
20.) $\left(\frac{5}{3}\right)^{4}$
21.) $\left(6^{3 / 4}\right)^{4 / 5}$
22.) $\left(\frac{7}{2}\right)^{-3}$
22.) $\frac{h^{4} x^{-7}}{p^{-5} b^{18}}$
23.) $\left(\frac{4}{5}\right)^{1 / 2}$

Algebra II - Unit 1: Revisiting Quadratics

24.) $\frac{10 a^{4} b^{7}}{12 a^{8} b^{5}}$

Challenge Questions:

27.) $\left(-3 m^{3} n\right)^{2}\left(2 m^{2} n^{4}\right)$
28.) $\frac{18 a^{-3} b^{2} c^{6}}{24 a^{2} b^{5} c^{4}}$
29.) $\left(\frac{2 x^{5} y^{3} z^{-2}}{5 x^{2} y^{4}}\right)^{2}$
30.) $\left(6 a^{2} b^{5} c\right)\left(4 a^{3} b^{-2} c^{8}\right)$
31.) $\left(4 p^{3} q^{-2} t^{4}\right)^{2}$
32.) $\left(\frac{4 x^{2} y^{-3}}{y^{-2}}\right)^{-1}$
33.) $\left(8 x^{7} y^{3}\right)\left(3 x^{-4} y^{8}\right)^{2}$
34.) $\left(9 a^{3} b^{5}\right)\left(-4 a^{3} b^{7}\right)^{2}$
35.) $\left(\frac{4 m^{4} \mathrm{n}^{-3} \mathrm{p}^{2}}{6 \mathrm{~m}^{2} \mathrm{n}^{2}}\right)^{-2}$
36.) $\left(4 t^{3} v^{2}\right)\left(-8 t v^{5}\right)\left(u^{0}\right)$
37.) $\left(\frac{3 x}{y^{-3}}\right)^{3}\left(\frac{5 x^{-10} y z^{2}}{2 x^{-1} y^{3}}\right)^{-2}$

Algebra II - Unit 1: Revisiting Quadratics

Lesson 1-2: Rewriting between rational and radical notation and Simplifying Radicals

Standard: MGSE9-12.N.RN. 2 - Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Learning Target: R1:

Property	Rule	Helpful Hint	Example
Radical to Rational Notation	$\sqrt[n]{a}=a^{\frac{1}{n}}$	Roots are at the bottom of trees	$\sqrt[3]{\mathbf{1 1}}$
Rational to Radical Notation	$a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m}$	Highest part of exponent stays high	$\mathbf{x}^{\frac{1 / 3}{5 / 2}}$

More Examples and Practice - Converting to Rational Exponent Notation:

1. $\sqrt[4]{81}$
2. $\sqrt[5]{32}$
3. $(\sqrt{36})^{3}$
4. $(\sqrt[4]{x})^{2}$

More Examples and Practice - Converting to Radical Notation:
5. $49^{1 / 2}$
6. $7^{1 / 4}$
7. $5^{2 / 5}$
8. $x^{2 / 3}$

Algebra II - Unit 1: Revisiting Quadratics

Property	Rule	Helpful Hint	Example
Product Rule	$\sqrt[a]{x} \cdot \sqrt[a]{y}=\sqrt[a]{x y}$	Same index... multiply terms	$\sqrt{10} \cdot \sqrt{x}=$
Quotient Rule	$\frac{\sqrt[a]{x}}{\sqrt[a]{y}}=\sqrt[a]{\frac{x}{y}}$	Same index... divide terms	$\frac{\sqrt{10}}{\sqrt{2}}=$

More Examples and Practice:

1. $\sqrt{48}$
2. $\sqrt{7 x} \cdot \sqrt{2 y}$
3. $\frac{\sqrt[3]{12 x^{2}}}{\sqrt[3]{4 x}}$
4. $\sqrt{\frac{144}{25}}$
5. $\sqrt{\frac{x^{6}}{121}}$
6. $\sqrt{16 x^{8} y^{12}}$
7. $\sqrt[4]{64 a^{8} b^{40}}$
8. $\sqrt[3]{27 a^{21} b^{6}}$

Algebra II - Unit 1: Revisiting Quadratics

Lesson 1-3: Complex Operations and Equations

Standard: MGSE9-12.N.CN. 1 - Understand there is a complex number i such that $\mathrm{i}^{2}=-1$, and every complex number has the form $a+b i$ where a and b are real numbers.

Learning Target: K2: \qquad

Introduction of " i "

The imaginary unit " i " is defined as $i=\sqrt{-1}$ and are used to find the square root of negative numbers.

If $i=\sqrt{-1}$, what is i^{2} ?

Standard Form:

The standard form of a complex number is written as a number $a+b i$, where " a " and " b " are real numbers.
Ex 1: $\quad 5 i-4$
Ex 2: $2 i+5+4 i$
Ex 3: $2 i^{2}-6 i$

Taking the Square Root of Negative Numbers:

Step 1: Rewrite the radical as $\sqrt{-1} \cdot \sqrt{\text { number }}$
Step 2: Rewrite $\sqrt{-1}$ as " i " and then simplify the remaining radical
Step 3: Rewrite in standard form

1. $\sqrt{-25}$
2. $\sqrt{-49}$
3. $\sqrt{-32}$

The Cycle of " i ":

- $\mathrm{i} \times \mathrm{i}=\mathbf{- 1}$,
- then $\mathbf{- 1} \times \mathrm{i}=-\mathrm{i}$,
$i^{0}=1 \quad i^{4}=1$
- then $-i \times i=\mathbf{1}$,
$\mathbf{i}^{1}=\mathbf{i} \quad \mathbf{i}^{5}=\mathbf{i}$
$i^{2}=-1 \quad i^{6}=-1$
- then $\mathbf{i} \times i=\mathbf{i}$ (back to i again!)
$i^{3}=-i \quad i^{7}=-i$

How to Simplify when " i " is raised to higher powers:

STEP 1: Divide the power by 4

STEP 2: Look at what is after the decimal and think money. Ask yourself how many quarters you would have and then refer back to the chart above.

Ex. i ${ }^{9} \quad \frac{9}{4}=2.25 \quad$ There would be 1 quarter

so it would be ${ }^{1}$ or just i

1. i^{12}
2. i^{13}
3. i^{20}
4. i^{22}
5. i^{46}
6. i^{99}
7. i^{1000}
8. i^{825}

Algebra II - Unit 1: Revisiting Quadratics

Operations with Complex Numbers

Standard: MGSE9-12.N.CN. 2 - Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Learning Target: K3: \qquad

Adding and Subtracting Complex Numbers (write the answer in standard form (a+bi):
Ex: $2 i+5 i$
Ex: $(3+5 i)-(2-6 i)$
Ex: $(2-3 i)+(8-2 i)$

You Try:

1. $5 \mathrm{i}-8 \mathrm{i}$
2. $(3+5 i)+(2-6 i)$
3. $(2-3 i)-(8-2 i)$

Multiplying Complex Numbers:

Step 1: Multiply using your preferred method
Step 2: Anywhere there is an " i " " replace it with (-1)
Step 3: Simply and write the answer in standard form (a+bi)
Ex: 2i $\cdot 5 i$
Ex: $(2+4 i)(7-8 i)$
Ex: $(3+4 i)^{2}$

You Try:

4. $5 \mathrm{i} \cdot-8 \mathrm{i}$
5. $(3+5 i)(2-6 i)$
6. $(2-3 i)(8-2 i)$
7. $(3+5 i)(3-5 i)$
8. $(2+7 i)^{2}$
9. $3(2+4 i)+2(3-5 i)$

Algebra II - Unit 1: Revisiting Quadratics

Standard: MGSE9-12.N.CN. 3 - Find the conjugate of a complex number; use the conjugate to find the quotient of complex numbers.

Learning Target: R2: \qquad

Finding a Complex Conjugate (write the answer in standard form (a+bi):

Step 1: Change the sign/operation of the complex number. Do not change the sign of the real number.

Ex: $\quad 4+6 i$
Ex: $-5-3 i$

Ex: 8i
Ex: 6

Dividing Complex Numbers

Step 1: Find the complex conjugate of the denominator
Step 2: Multiply the numerator and denominator by the complex conjugate of the denominator
Step 3: Simply and write the answer in standard form (a + bi)

Ex: $\frac{10 i}{6 i}$
Ex: $\frac{2+5 i}{3 i}$
Ex: $\frac{6-5 i}{4-i}$
9. $\frac{3+2 i}{5+3 i}$
10. $\frac{5+6 i}{2+3 i}$
11. $\frac{-4+2 i}{-3+2 i}$

Algebra II - Unit 1: Revisiting Quadratics
 Complex Numbers - Additional Practice

Simplify the following:

1. $\sqrt{-7}$
2. $\sqrt{-81}$
3. $\sqrt{-21}$
4. i^{941}
5. i^{15}
6. i^{304}
7. $(-3+4 i)+(6+2 i)$
8. $(12-8 i)-(6-6 i)$
9. $(2-4 i)+(-8+9 i)$
10. $(3+8 i)+(9-4 i)$
11. $(12+4 \mathrm{i})-(8+10 \mathrm{i})$
12. $(8-4 \mathrm{i})-(-5+6 \mathrm{i})$
13. $8 \mathrm{i} \cdot 3 \mathrm{i}$
14. $-2 \mathrm{i} \cdot 3 \mathrm{i}$
15. $5 \mathrm{i} \cdot-2 \mathrm{i}$
16. $2 \mathrm{i}(\mathrm{i}-2)$
17. $-4 i(i+3)$
18. $7 \mathrm{i}(\mathrm{i}+4)$
19. $(2-3 i)(4+5 \mathrm{i})$
20. $(3+5 \mathrm{i})(1+4 \mathrm{i})$
21. $(-4 i-2 i)(2 i-3 i)$
22. $\frac{2+5 i}{-3 i}$
23. $\frac{3+7 i}{4-2 i}$
24. $\frac{5-2 i}{1+4 i}$

Algebra II - Unit 1: Revisiting Quadratics

 Lesson 1-4: Solving Quadratics by Factoring

 Lesson 1-4: Solving Quadratics by Factoring}

Standard: MGSE9-12.N.CN. 7 - Solve quadratic equations with real coefficients that have complex solutions by (but not limited to) square roots, completing the square, and the quadratic formula.

Standard: MGSE9-12.A.REI.4b - Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation.

Learning Target: R3: \qquad

Learning Target: R4: \qquad

Review of Factoring:
STEP 1: Check for a GCF
STEP 2: Check difference of Squares
STEP 3: Check a•c method where $a=1$
STEP 4: Check a•c method where $a \neq 1$ (grouping method)
Factor the following if possible:
Ex. $15 x^{2}-9$
Ex. $x^{2}-49$
Ex. $4 x^{2}-64$

You Try:

1. $15 x^{2}+3 x$
2. $x^{2}-36$
3. $3 b^{2}-300$

Factor the following if possible:

Ex. $x^{2}-10 x-24$
Ex. $x^{2}-13 x+30$
Ex. $3 g^{2}-24 g-60 g$

Algebra II - Unit 1: Revisiting Quadratics

You Try:
4. $w^{2}+6 w-40$
5. $m^{2}-7 m-60$
6. $2 a^{2}-18 a+40$

Factor the following if possible:
Ex. $4 x^{2}+12 x+9$
Ex. $2 x^{2}+7 x-15$
Ex. $6 m^{2}+10 m-24$

You Try:
7. $6 x^{2}-1 x-2$
8. $3 a^{2}-10 a+8$
9. $2 x^{2}-2 x-24$

Algebra II - Unit 1: Revisiting Quadratics

Solving with Factoring:
Step 1: Put the equation in standard form (It should equal zero)
Step 2: Factor fully
Step 3: Set each factor equal to zero and solve
Ex. $m^{2}-11 m+18=0$
Ex. $2 t^{2}=16 t+40$
Ex. $r^{2}-6 r=0$
Ex. $h^{2}-25=0$
Ex. $2 x^{2}+5 x-12=0$

You Try:

1. $x^{2}-2 x-8=0$
2. $8 p^{2}-18=0$
3. $2 h-16=0$

Algebra II - Unit 1: Revisiting Quadratics

4. $3 x^{2}+3 x-2=10-2 x$
5. $\mathrm{m}^{2}-100=0$
6. $8 x^{2}-6 x-9=0$

Standard: MGSE9-12.N.CN. 8 - Extend polynomial identities to include factoring with complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$.

Learning Target: R4: \qquad

Factoring with Complex Factors:

Ex. $n^{2}+36$
Ex. $4 a^{2}+25$
Ex. $5 q^{2}+45$

1. $12 t^{2}+3$
2. $x^{2}+100$
3. $2 p^{2}+36$

Algebra II - Unit 1: Revisiting Quadratics

Lesson 1-5: The Discriminant and the Quadratic Formula

Standard: MGSE9-12.A.REI.4b - Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation.

Learning Target: R3: \qquad

The Discriminant

The discriminant determines the type of solution: Rational or Irrational and Real or Imaginary.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \longrightarrow b^{2}-4 a c=\text { discriminant }
$$

If the discriminant is >0 (positive)
If the discriminant is $=0$
If the discriminant is <0 (negative)

There are 2 Real Solutions and 0 Imaginary Solutions There is 1 Real Solution and 0 Imaginary Solutions There are 0 Real Solutions and 2 Imaginary Solutions

Need a picture??

2 Real Solutions

There are several terms that mean the same thing:

* Solution
* Roots
* Zeros
* x-intercepts

Finding the Discriminant:

Step 1: Make sure you are in standard form. $a x^{2}+b x+c=0$
Step 2: Identify a, b, c
Step 3: Substitute into the discriminant formula. $b^{2}-4 a c$
Step 4: Use the discriminant to determine the number and type of solutions.
Ex. $2 x^{2}-8 x-14=0$
Ex. $3 x^{2}-15 x+12=0$
Ex. $8 x^{2}-24 x+18=0$

You Try:

1. $3 x^{2}+2 x+8=0$
2. $3 x^{2}-10 x-7=0$
3. $x^{2}-6 x+13=0$

Algebra II - Unit 1: Revisiting Quadratics
 The Quadratic Formula

When using the quadratic formula you are finding solutions which represent the x-intercepts on the graph of a quadratic function.

Standard Form: $y=a x^{2}+b x+c \quad$ Quadratic Formula: $x=\frac{-b \pm \sqrt{(b)^{2}-4(a)(c)}}{2(a)}$
Ex: $x^{2}+6 x+5=0$
Ex: $x^{2}-4 x+4=0$
Ex: $2 x^{2}-3 x+4=0$

You Try:

1. $x^{2}+10 x-19=0$
2. $x^{2}+15 x-8=0$
3. $2 x^{2}-8 x+15=0$
4. $3 x^{2}-7 x-6=0$
5. $2 x^{2}-10 x-3=0$
6. $3 x^{2}-6 x+7=0$
7. $3 x^{2}+2 x=2 x^{2}-1$
8. $2 x^{2}-3 x=-2$

Algebra II - Unit 1: Revisiting Quadratics

UNIT 1 Reflection

Name:
Period: \qquad
Do you feel like you stay on task during class? \qquad
What do you think is your biggest distraction in class? \qquad

Do you feel like you are struggling with the content? \qquad
What about this unit did you find to be the easiest? \qquad
\qquad
\qquad
What about this unit did you find to be the most difficult? \qquad
\qquad
\qquad

How can I help you be more successful? \qquad
\qquad
\qquad

